Congruences for q-Lucas Numbers

نویسنده

  • Hao Pan
چکیده

For α, β, γ, δ ∈ Z and ν = (α, β, γ, δ), the q-Fibonacci numbers are given by F ν 0 (q) = 0, F ν 1 (q) = 1 and F ν n+1(q) = q αn−βF ν n (q) + q γn−δF ν n−1(q) for n > 1. And define the q-Lucas number Ln(q) = F ν n+1(q)+ q γ−δF ν∗ n−1(q), where ν∗ = (α, β− α, γ, δ − γ). Suppose that α = 0 and γ is prime to n, or α = γ is prime to n. We prove that Ln(q) ≡ (−1) (mod Φn(q)) for n > 3, where Φn(q) is the n-th cyclotomic polynomial. A similar congruence for q-Pell-Lucas numbers is also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers

We present several polynomial congruences about sums with central binomial coefficients and harmonic numbers. In the final section we collect some new congruences involving Fibonacci and Lucas numbers.

متن کامل

ON THE LEAST SIGNIFICANT p –ADIC DIGITS OF CERTAIN LUCAS NUMBERS

We calculate the least significant p-ary digits of certain Lucas numbers Vn = Vn(P,Q) with V0 = 2, V1 = P and Vn = PVn 1 QVn 2 for n 2. We base our study on an observation regarding these numbers: as m increases, more and more p-adic digits match in Vkpm with integer k 1. We use multisection identities for generating functions and derive congruences for the underlying sequences.

متن کامل

Congruences Involving Sums of Ratios of Lucas Sequences

Given a pair (Ut) and (Vt) of Lucas sequences, we establish various congruences involving sums of ratios Vt Ut . More precisely, let p be a prime divisor of the positive integer m. We establish congruences, modulo powers of p, for the sum ∑ Vt Ut , where t runs from 1 to r(m), the rank of m, and r(q) ∤ t for all prime factors q of m.

متن کامل

On Lucas-bernoulli Numbers

In this article we investigate the Bernoulli numbers B̂n associated to the formal group laws whose canonical invariant differentials generate the Lucas sequences {Un} and {Vn}. We give explicit expressions for these numbers and prove analogues of Kummer congruences for them.

متن کامل

Some Congruences for Balancing and Lucas-balancing Numbers and Their Applications

Balancing numbers n and balancers r are solutions of the Diophantine equation 1 + 2 + . . . + (n 1) = (n + 1) + (n + 2) + . . . + (n + r). It is well-known that if n is a balancing number, then 8n2 + 1 is a perfect square and its positive square root is called a Lucas-balancing number. In this paper, some new identities involving balancing and Lucas-balancing numbers are obtained. Some divisibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013